1) Create link for

<<Course Outcomes – EVEN Semester 2020-21>>

S.No	Semeste r	Theory/Practic	Course Code / Course Name
1.	4	Theory	MA8491- Numerical Methods
2.	4	Theory	EI8451- Electrical Machines
3.	4	Theory	EI8452- Industrial Instrumentation - I
4.	4	Theory	EE8451- Linear Integrated Circuits and Applications
5.	4	Theory	IC8451- Control Systems
6.	4	Theory	EC8395- Communication Engineering
7.	4	Practical	EI8461- Devices and Machines Laboratory
8.	4	Practical	EE8461- Linear and Digital Integrated CircuitsLaboratory
9.	6	Theory	EI8651-Logic and Distributed Control System
10.	6	Theory	EI8691-Computer Control of Processes
11.	6	Theory	CS8391-Data Structures
12.	6	Theory	EI8692-Electronic Instrumentation
13.	6	Theory	EI8074-Computer Networks
14.	6	Theory	EE8071-Applied Soft Computing
15.	6	Practical	CS8381-Data Structures Laboratory
16.	6	Practical	EI8661-Process Control Laboratory
17.	6	Practical	HS8581-Professional Communication
18.	8	Theory	EI8073-Biomedical Instrumentation
19.	8	Theory	EI8079-Robotics and Automation
20.	8	Practical	EI8811-Project Work

FOURTH SEMESTER

MA8491- Numerical Methods

COs	Course Outcome: The students, after the completion of the course, are expected to	
	••••	
CO1	Apply the concepts of algebraic and transcendental equations	
CO2		
CO3		
CO4	Apply the numerical techniques of differentiation and integration for engineering problems.	
CO5	Understand the knowledge of various techniques and methods for solving first and second order	
	ordinary differential equations.	
CO6	Solve the partial and ordinary differential equations with initial and boundary conditions by	
CO0	using certain techniques with engineering applications.	

EI8451- Electrical Machines

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Understand the working principles of DC machines as Generator and Motor, types, determination of
	their no-load/load characteristics, starting and methods of speed control of motors.
CO ₂	Acquire the basic knowledge of construction, working and operation of transformer
CO3	Analyse the construction and working of Synchronous machines
CO4	Understand the construction working starting and speed control of three phase induction
	motor
CO5	Understand the principle of operation of Single Induction machines

EI8452- Industrial Instrumentation – I

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Introduce the measurement techniques of force, torque and speed
CO2	Introduce the measurement techniques of acceleration, Vibration and density
CO3	Introduce the measurement techniques of Viscosity, Humidity and moisture.
CO4	Introduce the temperature measurement techniques
CO5	Introduce the pressure measurement techniques

EE8451- Linear Integrated Circuits and Applications

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Outline the fabrication process of IC
CO ₂	Illustrate the ideal and non ideal characteristics of op-amp
CO3	Explain various applications of op-amp.
CO4	Design the different types of oscillators and ADC,DAC
CO5	Illustrate various application ICs
CO ₆	Explain the working of special function ICs.

IC8451- Control Systems

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Analyze electromechanical systems by mathematical modeling.
CO ₂	Illustrate the time response of first and second order systems using standard test signals
CO3	Examine the frequency-domain response of closed loop system
CO4	Identify a compensator system satisfying requirements
CO5	Develop system equations in state-variable form (state variable models)
CO6	Analyze a control theory applications to AC motors

EC8395- Communication Engineering

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Identify and Understand analog communication techniques
CO2	Discuss about pulse modulation techniques.
	Identify and Understand digital communication techniques
CO4	Understand the various source coding techniques and apply the suitable error control codes
CO5	Understand about spread spectrum techniques.
CO ₆	Understand about Multiple access techniques.

EI8461- Devices and Machines Laboratory

00	
COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Gain knowledge on the proper usage of various electronic equipment and simulation
	tools for design and analysis of electronic circuits.
CO ₂	Get hands-on experience in studying the characteristics of semiconductor devices.
CO3	Ability to analyze various electronic circuits such as voltage regulators, transistor amplifiers and oscillators.
CO4	Ability to make use of basic concepts to obtain the no load and load characteristics of
	D.C machines.
CO5	Analyze and draw conclusion from the characteristics obtained by conducting experiments on machines.
CO6	Ability to carry out the Experiments in batches to motivate the Team work.

EE8461- Linear and Digital Integrated Circuits Laboratory

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Ability to understand and implement Boolean Functions.
CO ₂	
CO3	Ability to Design and implement 4-bit shift registers.
CO4	Ability to acquire knowledge on Application of Op-Amp
CO5	Ability to Design and implement counters using specific counter IC

SIXTH SEMESTER

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Understand all the important components of PLC and SCADA, I/O modules and field devices of an
	industrial automation system.
CO ₂	
CO ₃	Develop PLC program in using other languages for industrial sequential applications.
CO4	Understand all the important components of DCS and Smart field devices of an industrial
	automation system.
CO5	Explain the most appropriate automation technologies for a given application.
CO6	Outline the recent developments in industrial automation.

EI8691-Computer Control of Processes

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO ₁	Ability to analyze the discrete time systems
CO2	Ability to build models from input-output data
CO ₃	Ability to design a digital controller
CO4	Ability to design multi-loop controller and multivariable controller for multi-variable
	systems.
CO ₅	Illustrate the multi-loop regulatory control techniques
CO6	Explain the different types of multivariable regulatory controllers

CS8391-Data Structures

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
CO1	Implement abstract data types using arrays and linked list.
CO2	Apply the different linear data structures like stack and queue to various computing problems.
CO3	Implement different types of trees and apply them to problem solutions.
CO4	Discuss graph structure and understand various operations on graphs and their applicability.
CO5	
CO ₆	Understand the hashing technique and hash functions.

EI8692-Electronic Instrumentation

COs	Course Outcome: The students, after the completion of the course, are expected to					
	••••					
CO1	Demonstrate various electronic instruments for measurement of voltage					
CO2	Illustrate various types of cathode ray oscilloscopes and their applications					
CO3	Summarize different types of signal analysers					
CO4	Explain different types of waveform generators					
CO5	Examine a measurement system using VI programming techniques					
CO6	Apply different types of modulation and multiplexing techniques in telemetry					

EI8074-Computer Networks

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Ability to identify the components required to build different types of Networks

CO ₂	Analyze the required functionality at each layer for given application
CO3	Analyze the solution for each functionality at each layer
CO4	Trace the flow of information from one node to another node in the network
CO5	Analyze the congestion control and Avoidance
CO ₆	Understand the tradition application and web service

EE8071-Applied Soft Computing

COs	Course Outcome: The students, after the completion of the course, are expected to					
	••••					
CO1	Understanding and apply basic science ,circuit theory,Electromagnetic field theory control theory and					
	Apply them to electrical engineering problem					
CO ₂	Understand and apply computing platform and software for engineering problems					

CS8381-Data Structures Laboratory

COs	Course Outcome: The students, after the completion of the course, are expected to				
	••••				
CO ₁	Write functions to implement linear and non-linear data structure operations				
CO ₂	Suggest appropriate linear / non-linear data structure operations for solving a givenproblem				
CO3					
CO4	Apply appropriate hash functions that result in a collision free scenario for data storage and				
	retrieval				

EI8661-Process Control Laboratory

COs	Course Outcome: The students, after the completion of the course, are expected to					
	••••					
CO1	Ability to understand and analyze process control engineering problems.					
CO2	Be able to build dynamic models using input – output data of a process					
CO3	Ability to working with real time control loops(flow/level/temperature/pressure)					
CO4	Get exposed to simulation tools such as MATLAB/LABVIEW/ASPEN					
CO5	Ability to learn and implement simple adaptive and model based control schemes					

HS8581-Professional Communication

COs	Course Outcome: The students, after the completion of the course, are expected to					
	••••					
CO ₁	Make effective presentations					
CO ₂	Participate confidently in Group Discussions					
CO3	Attend job interviews and be successful in them					
CO4	Develop adequate Soft Skills required for the workplace					
CO5	Enhance the Employability and Career Skills					

EIGHTH SEMESTER

EI8073-Biomedical Instrumentation

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••

CO1	Understand the philosophy of the heart, lung, blood circulation and					
	respiration system.					
CO2	Understanding to provide latest ideas on devices of non-electrical devices					
CO3	Abilityto gain knowledge on various sensing and measurement devices of electrical origin.					
CO4	Ability to understand the analysis systems of various organ types					
CO5	Ability to bring out the important and modern methods of imaging techniques and their					
	analysis					
CO6	Ability to explain the medical assistance/techniques, robotic and therapeutic equipments					

EI8079-Robotics and Automation

COs	Course Outcome: The students, after the completion of the course, are expected to
	••••
	Understand the evolution of robot technology and mathematically represent different types of robot
CO2	Get exposed to the case studies and design of robot machine interface.
CO3	Familiarize various control schemes of Robotics control

EI8811- Project Work

COs	Course Outcome: The students, after the completion of the course, are expected to					
	••••					
	Demonstrate a sound technical knowledge of their selected project topic					
CO2	Identify the problem, formulation and solution					
CO3	Design engineering solutions to complex problems utilizing a systems approach					
CO4	Develop an engineering project					
	Demonstrate the knowledge, skills and attitudes of a professional engineer					
CO ₆	Improve the managerial skills to meet the industry					